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Abstract

We describe the pH response of a set of isomeric water-soluble fluorescent probes based on both the 6-aminoquinolinium and boronic acid
moieties. These probes show spectral shifts and intensity changes with pH, in a wavelength-ratiometric and colorimetric manner. Subsequently,
changes in pH can readily be determined around the physiological level.

Although boronic acid containing probes are known to exhibit pH sensitivity along with an ability for saccharide binding/chelating, the
new probes reported here are considered to be unique and show an unperturbed pH response, even in the presence of high concentrations
background saccharide, such as with glucose and fructose, allowing for the predominant pH sensitivity. The response of the probes is based
on the ability of the boronic acid group to interact with strong bases like @Hanging from the neutral form of the boronic acid group,
R-B(OH),, to the anionic ester, R-BOH);, form, which is an electron donating group. The presence of an electron deficient quaternary
heterocyclic nitrogen center and a strong electron donating amino group in the 6-position of the quinolinium backbone, provides for the
spectral changes observed upon Otbmplexation. In addition, by comparing the results obtained with systems separately incorporating
6-methoxy or 6-methyl substituents, the suppressed response towards monosaccharides, such as with glucose and fructose, can clearly b
observed for these systems. Finally we compare our results to those of a control compound, BAQ, which does not contain the boronic acid
group, allowing a rationale of the spectral changes to be made.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction variety of analytes, offer intrinsic advantages for both chem-
ical and biomedical fluorescence sengih@]. Due to a vari-
The development of wavelength-ratiometric or lifetime ety of chemical, optical or other instrumental related factors,
based probes for the determination and/or quantification of afrequent calibrations of fluorescence intensity based sensing
measurements are typically required. Unfortunately, while
fluorescent probes are known to be useful in a variety of ap-
Abbreviations: BA, boronic acid; BAF and BAFs, boronic acid con-  Plications including fluorescence microscopy, fluorescence
taining fluorophore/s; BAQN-(benzyl)-6-aminoquinolinium bromide-, sensing, DNA technology, etc. most sensing fluorophores
e, or p-BAQBA, N-(2-, 3-, or 4-boronobenzyl)-6-aminoquinolinium  only display changes in intensity in response to analytes, and
bromide; HPTS, 1-hydroxypyrene-3,6,8-trisulfonate; LED, light emitting  nance relatively few wavelength-ratiometric probes are avail-

diode; SNAFL, seminaphthofluoresceins; SNARF, seminaphthorhodafluors; . .
TCSPC, time-correlated single photon counting able today{1,2]. Among these, a few wavelength-ratiometric

: 2
+ Corresponding authors. Tel. +1 4107067500: fax: +1 4107068048, Probes for the sensing of pH, €aMg?* Ag*, F’b2+ and K"
E-mail addresschris@cfs.umbi.umd.edu (C.D. Geddes). have been reportd@—9]. Subsequently there is great interest
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R? 2. Experimental
Br R? 2.1. Materials and preparation of the pH sensitive

/Ofﬁj R probes
v
H,oN

All chemicals were purchased from Sigma-Aldrich at
Boronic Acid Probe  R! R? R3 the highest purity available. Bromomethylphenylboronic
acids were either purchased from Combiblocks or prepared

0-BAQBA B(OH), H H from the corresponding methylphenylboronic acids using
m-BAQBA " B(OI1), u N-bromosuccinamide and a peroxide initiator as described
in the literaturd22]. The boronic acid containing fluorescent
p-BAQBA H H B(OH), probeso-, m and p-BAQBA and a control compound
BAQ, were conveniently prepared using the followin
BAQ H i . Q y prep g g

generic one step synthetic procedure, described below for
the control compound BAQ. The correspondiog m-, or
p-boronobenzyl bromides are employed instead of benzyl
bromide to obtain the isomeric boronic acid derivatiges
m andp-BAQBA, respectivelyFig. L Equimolar amounts
in the development of new probes capable of sensing variousof 6-aminoquinoline and benzylbromide were dissolved
analytes. in 20 mL dry acetonitrile in a 25 mL round-bottomed flask
The requirements of pH sensing have driven the devel- equipped with a magnetic stirrer. The reaction mixture
opment of several notable dyes in the past such as fluo-was allowed to stir under an inert atmosphere for 24 h at
resceirf10-13] HPTS (1-hydroxypyrene-3,6,8-trisulfonate) room temperature. During this time a quantitative amount
[14-17] SNAFL (seminaphthofluoresceins) and the SNARF of quaternized salt was precipitated as a yellow solid.
(seminaphthorhodafluord)l,18] pH probes. While these The solid product was recovered by filtration, washed
probes are widely used and amongst the main pH probes usedeveral times with dry acetonitrile, and then dried under
today, they were historically developed due to the require- vacuum for 12h. The obtained compounds were further
ment for visible wavelength excitation, noting the expense purified using preparative TLC (silica gel, 20% methanol
and complexity of past UV excitation sourdd$. However, in dichloromethane). The absorption and emission spectral
blue and UV, laser diode and light emitting diode sources are properties of the probes in water are showiaible 1
now readily available, allowing the possibility of using ratio-

metric probes at shorter wavelengths, which was previously 2 1 1. Analytical data for the compound BAQ
not considered practicl]. Subsequently, in a previous com- 1H NMR (D20), § (ppm): 6.2 (s, 2H), 7.2—7.5 (m, 5H),
munication we described a wavelength-ratiometric pH sen- 7 g (m, 2H), 8.0 (d, 1H), 8.2 (d, 1H), 8.8 (m, 1H) and 9.1 (d,

sor based on the boronic acid derivative 6-aminoquinolinium 1) HRMS (FAB+, HO), m/e: calculated: 235.1235\*),
bromide 6-BAQBA) [19]. In this full paper we extend and  foynd: 235.1291N1).

characterize a full set of isomeric boronic acid containing
quinolinium probesFig. 1, which shows spectral shifts and
intensity changes as a function of pH, in both a ratiometric
and colorimetric manner, enabling pH to be sensed at near-
physiological levels. These probes are readily water-soluble,
are simple to synthesize, and work in both an excitation and
fluorescence emission ratiometric manner. It is worth noting
that both fluorescein and HPTS can only be used in an excita-
tion wavelength-ratiometric manner, with only one emission o o

. . . . Spectral properties in water and dissociation constdgs,of o-, m- and
band observed at510 nm[l]' With an isosbestic point at p-BAQBA and control compound with glucose and fructose in pH 7.0 phos-
around 358 nm these probes can be readily used in a flu-phate buffer
orescence ratiometric manner using a simple UV LED for o .o

Fig. 1. Molecular structure of BAQBA probes and the control compound
BAQ.

2.1.2. Analytical data for the compound 0-BAQBA

H NMR (D20), 8 (ppm): 6.5 (s, 2H), 7.1 (s, 1H), 7.4-7.5
(m, 2H), 8.0-8.3 (m, 4H), 8.5 (d, 1H), 8.95(d, 1H) and 9.2 (d,
1H). HRMS (FAB+, HO), m/e: calculated: 279.1299*),
found: 279.1305M1%).

Table 1

Aabs(max) Aem (Max) Dissociation constants,

excitation. (nm) (nm) Kp (mM)
Additionally, these probes, having a boronic acid group, Glucose  Fructose
show suppressed sugar response unlike the 6-methoxy or SEN 391 546 P P
methyl quinolinium probes published previously by authors ,gagpa 381 546 10 16
[20,21] Although an explanation for the suppressed sugar mBAQBA 381 546 171 222
response of these probes is not yet clear, the use of an amin@-BAQBA 398 560 25 87

group in the 6-position here is unique, potentially enabling 2 BAQ cannot bind glucose or fructose due to it not having a boronic acid
for practical pH sensing in physiological fluids. group,Fig. 1
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2.1.3. Analytical data for the compound m-BAQBA N OH ~. OH
1H NMR (D20), § (ppm): 6.2 (S, 2H), 7.3=7.5 (m, 2H), = Hl/\)_fmn
7.6 (s, 1H), 7.7 (d, 1H), 7.9 (d, 1H), 8.0 (m, 2H), 8.2 (d, Br on Br o
1H), 9.0 (d, 1H) and 9.25 (d, 1H). HRMS (FAB+2B), m/e: | N i @
calculated: 279.129M"), found: 279.1302M1%). LN / K N -

2.1.4. Analytical data for the compound p-BAQBA

H NMR (D20), § (ppm): 6.2 (s, 2H), 7.2 (d, 2H), 7.7 (d,
2H), 7.8 (t, 1H), 8.0-8.2 (m, 3H), 9.0 (d, 1H) and 9.15 (d,
1H). HRMS (FAB+, HO), m/e: calculated: 279.129M),
found: 279.1297N1™).

Scheme 1. Equilibrium involved in the interaction between the boronic acid
group and OH.
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Fig. 2. Absorption spectrum ah-BAQBA (top) and BAQ (middle) with Fig. 3. FIuoresceqce emission s_pectrmEBAQBA and BAQ.with ir!creas-.
increasing pH and the corresponding absorption ratiometric plots obtained N9 PH. top and middle, respectively, and the corresponding ratiometric re-

based orAso/Asgs bands (bottom). sponse based on thg/ls46 bands.
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2.2. Methods sorption as the pH is increased, which is attributed to the
lack of a boronic acid grougsig. 1, which is well-known
All steady-state fluorescence measurements were underto complex strong bases such as the hydroxyl [i28],
taken in 4cmx 1cmx 1cm fluorometric plastic cuvettes, Scheme 1Similarly, the two other probes show very sim-
using a Varian Cary Eclipse fluorometer, and all absorption ilar absorption spectral changes towards pH. Subsequently,
measurements were performed using a Varian UV-vis 50 Fig. 2(bottom) shows the absorption wavelength-ratiometric

spectrophotometer. plots for the three isomeric BAQBAs and BAQ based on the
Aza0/Assg bands. The obtained{g values are in the range of
2.3. Data analysis 6.5-6.7 for all three probes, which is appropriate for near-

physiological pH measurements. In contrast BAQ, as ex-
Titration curves with pH were determined in buffer solu-
tion: pH 3 and 4 acetate buffer; pH 5-9 phosphate buffer and

pH 10 and 11 carbonate buffer. Titration curves were fitted 300 | 0.0 mM
and K, (pKa=—logioKa) values were obtained usingthe | @7
relation: Z P07
=]
10 P" acia + Kalbase g 200 ¢
I = oH (1) - ¥ 100mM G lu.
Ka+ 10_ % 150 A
wherelgcig andlpgseare the intensity limits in the acid and 2 100 |
base regions, respectively. 8
Stability (Ks) and dissociationKp) constants were ob- = 5l
tained by fitting the titration curves, with sugar, using the m-BAQBA
1 B 0 L 1 L 1 L
relation: 400 450 500 550 600 650
_ Inin + ImaXKS[SUQar] (2) Wavelength/nm

1+ Ks[sugar]

350

where Imin and Inax are the initial (no sugar) and final
(plateau) fluorescence intensities of the titration curves,
whereKp = 1/Ks.

3. Results and discussion

Fluorescence Intensity

Fig. 2shows the change in absorbance for botBAQBA
(top) and BAQ (middle) as a function of pH. As the pH
increases the absorption band at about 388 nm decreases
(for BAQBAS), while the band at 340 increases. We can

see significant changes in both the bands as the pH is al- 4004505000 550 600 650
tered. In contrast, BAQ shows only a slight decrease in ab- Wavelength / nm
1.14
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Fig. 5. Fluorescence emission spectrarteBAQBA with increasing sugar
concentrations, top and middle, and the corresponding normalized plots,
Fig. 4. Photograph of two vials containing equal concentrationsnof wherel andl’ are the intensities in the presence and absence of sugar, re-
BAQBA in pH 5.0 and 8.0 phosphate buffer left and right, respectively. spectively, bottom.
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pected, shows relatively very little response to changes in of the quinolinium nucleus by the hydroxyl ion at high pH
pH. [24].

The fluorescence emission spectran®BAQBA shows For the data shown iRig. 3we constructed the fluores-
similar wavelength-ratiometric behavidtig. 3top), where cence emission ratiometric responBig. 3bottom). Itis in-
rex=358nm, i.e. at the isosbestic point. As the pH in- teresting to compare the dynamic sensing range towards pH
creases we typically see a decrease in fluorescence inshown in bothFigs. 2 and 3Clearly a greater change is ob-
tensity of the 546 nm band, which is the uncomplexed served for the ratiometric absorption measurements, reflect-
or acid form, while the band at 450 nm increases (com- ing the differences in extinction coefficients and quantum
plexed or ester form). In contrast, BAQ shows a simple yields of the OH unbound and bound forms, respectively.
decrease in fluorescence intensity as the pH is increasedFurther, achange in pH readily leads to a most notable change
Fig. 3(middle), which is attributed to the known quenching in color, as evident by the changes in the absorption spectra
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Fig. 6. Absorption and fluorescence emissiag € 358 nm) form-BAQBA in the presence of glucose, top, fructose, middle, and the respective ratiometric
plots for all three isomers both with and without sugars, bottom panels.
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in Fig. 2(top) suggesting that the isomeric probes could be compared to phenyl boronic acid. These combined features

widely used as colorimetric type probé&sg. 4 shows a pho-
tograph of two vials containing equal concentrationsref
BAQBA in pH 5.0 and pH 8.0 phospahate buffErg. 4(left

make these probes ideal probes for near-physiological pH
determination.

and right), respectively. One can see a noticeable color change
fromyellow in acidic media to colorless in basic pH solutions. Acknowledgements
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